Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites
نویسندگان
چکیده
This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.
منابع مشابه
The Diametrically Loaded Cylinder for the Study of Nanostructured Aluminum–Graphene and Aluminum–Alumina Nanocomposites Using Digital Image Correlation
Citation: Tabandeh-Khorshid M, Schultz BF, Rohatgi PK and Elhajjar R (2016) The Diametrically Loaded Cylinder for the Study of Nanostructured Aluminum–Graphene and Aluminum–Alumina Nanocomposites Using Digital Image Correlation. Front. Mater. 3:22. doi: 10.3389/fmats.2016.00022 The Diametrically Loaded Cylinder for the Study of Nanostructured Aluminum–Graphene and Aluminum–Alumina Nanocomposite...
متن کاملThe synthesis of alumina nanowires on the surface of a porous alumina membrane
Porous aluminum oxide membranes with a complete and even covering of alumina nanowires were formed in a one-step anodization process in dilute phosphoric acid electrolyte. The anodizing conditions can be adjusted to start forming alumina wires that originate on the surface of the porous alumina layer at the triple junction points (the edges of the hexagonal inter-pore structure where three pore...
متن کاملCharacterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering
Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al4C3 ...
متن کاملSliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route
The wear resistance of Al2O3/2.5 vol.% Ni nanocomposites sintered by a conventional route was studied under ball-on-disk dry sliding conditions and compared with the same nanocomposites but consolidated by spark plasma sintering, together with alumina obtained by the same technique and by hot pressing. The results showed an improvement of about 0.5, 1 and 2 orders of magnitude, respectively. Th...
متن کاملElectroconductive Alumina - TiC - Ni nanocomposites obtained by Spark Plasma
In the present work, the processing and characterization of electroconductive Alumina-TiC-Ni nanocomposites obtained by Spark Plasma Sintering (SPS) are described. These nanocomposites are singular due to the excellent mechanical properties they present (particular regarding Vickers hardness, 25.6 ± 0.7 GPa), as well as their extremely good wear behaviour, studied under “ball-on-disk” dry slidi...
متن کامل